Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual.
نویسندگان
چکیده
Bone mass accrual is a major determinant of skeletal mass, governed by bone remodeling, which consists of bone resorption by osteoclasts and bone formation by osteoblasts. Bone mass accrual is inhibited by sympathetic signaling centrally regulated through activation of receptors for serotonin, leptin, and ACh. However, skeletal activity of the parasympathetic nervous system (PSNS) has not been reported at the bone level. Here we report skeletal immune-positive fibers for the PSNS marker vesicular ACh transporter (VAChT). Pseudorabies virus inoculated into the distal femoral metaphysis is identifiable in the sacral intermediolateral cell column and central autonomic nucleus, demonstrating PSNS femoral innervation originating in the spinal cord. The PSNS neurotransmitter ACh targets nicotinic (nAChRs), but not muscarinic receptors in bone cells, affecting mainly osteoclasts. nAChR agonists up-regulate osteoclast apoptosis and restrain bone resorption. Mice deficient of the α(2)nAChR subunit have increased bone resorption and low bone mass. Silencing of the IL-1 receptor signaling in the central nervous system by brain-specific overexpression of the human IL-1 receptor antagonist (hIL1ra(Ast)(+/+) mice) leads to very low skeletal VAChT expression and ACh levels. These mice also exhibit increased bone resorption and low bone mass. In WT but not in hIL1ra(Ast)(+/+) mice, the cholinergic ACh esterase inhibitor pyridostigmine increases ACh levels and bone mass apparently by inhibiting bone resorption. Taken together, these results identify a previously unexplored key central IL-1-parasympathetic-bone axis that antagonizes the skeletal sympathetic tone, thus potently favoring bone mass accrual.
منابع مشابه
Orexin regulates bone remodeling via a dominant positive central action and a subordinate negative peripheral action.
Orexin neuropeptides promote arousal, appetite, reward, and energy expenditure. However, whether orexin affects bone mass accrual is unknown. Here, we show that orexin functions centrally through orexin receptor 2 (OX2R) in the brain to enhance bone formation. OX2R null mice exhibit low bone mass owing to elevated circulating leptin, whereas central administration of an OX2R-selective agonist a...
متن کاملReduced bone mass accrual in mouse model of repetitive mild traumatic brain injury.
Traumatic brain injury (TBI) can affect bone by influencing the production/actions of pituitary hormones and neuropeptides that play significant regulatory roles in bone metabolism. Previously, we demonstrated that experimental TBI exerted a negative effect on the skeleton. Since mild TBI (mTBI) accounts for the majority of TBI cases, this study was undertaken to evaluate TBI effects using a mi...
متن کاملRole of innervation in the control of bone remodeling.
During the last fifteen years, an increasing number of studies have examined the origin, the ontogeny, and the distribution of nerve fibers in bone. They have also investigated the nature of neuromediators conveyed by these skeletal nerve fibers. Experimental models of sensory and sympathetic denervation and clinical studies have shown that these two neuronal systems are involved in bone develo...
متن کاملGenetic determination of the cellular basis of the sympathetic regulation of bone mass accrual
The sympathetic nervous system, whose activity is regulated by leptin signaling in the brain, is a major regulator of bone mass accrual. To determine the identity of the cell type in which the sympathetic tone signals to inhibit bone mass accrual, we performed a systematic, cell-specific analysis of the function of the β2 adrenergic receptor (Adrβ2) and various genes implicated in the pathway i...
متن کاملBone accrual in children: adding substance to surfaces.
The mass of growing bones increases through changes in outer dimensions and through the net addition of tissue on inner bone surfaces. In this overview I examine bone accrual as it occurs on trabecular (inner) and periosteal (outer) surfaces. In the axial skeleton, the amount of trabecular bone increases during development, because trabeculae grow thicker as a result of bone remodeling with a p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 38 شماره
صفحات -
تاریخ انتشار 2012